Parkinson's Disease

Parkinson's Disease: Overview

Parkinson's disease (paralysis agitans, shaking palsy) was first described in 1817.  It is now increasingly clear not only what causes Parkinson's, but also how it can be prevented and its relentless progress slowed down.

Diagnose your symptoms now!
  • understand what's happening to your body
  • see your health summarized and in detail
  • learn what you should be doing right now

The progression of Parkinson's disease ranges from Stage 1 up to Stage 5. Stage five is the most advanced and debilitating stage.  Advanced stages may increase the risk for health complications that reduce lifespan.

Incidence; Causes and Development

With no known cause, Parkinson's disease affects about 1% of the population over the age of 60 years in the United States.  Men are 50% more likely than women to develop the disease, and it seems to be more widespread in northern countries.  The incidence of the disease increases with age although aging itself is not believed to be a causative factor.  Parkinson's disease is rarely inherited and fewer than 1% of all cases are thought to have a genetic component.

There is no known direct cause of Parkinson's.

Environmental and Dietary Factors. Parkinson-like symptoms can occur as a result of head injuries, carbon monoxide poisoning or poisoning by pharmaceutical or other drugs.  Certain diuretics (reserpine), antipsychotics (chlorpromazine), and heart drugs (verapamil) have all been implicated in causing or worsening Parkinson's disease symptoms as has the "designer drug" MPTP (methylphenyl-tetrahydropyridine).  In some cases, drug-induced Parkinson's disease may be halted or reversed if the drug is promptly withdrawn.  Naproxen and other NSAIDs may also exacerbate Parkinson's disease.

Recent research carried out in Iceland, which has a very high incidence of Parkinson's disease, has shown that children born during or after a whooping cough (pertussis) epidemic are particularly vulnerable to Parkinson's disease in later life.  This finding supports the idea that Parkinson's disease may develop later in life as a result of a neurotoxic event that occurred at an early age.

The main pathological feature of Parkinson's disease is the progressive destruction of dopamine-producing cells in the substantia nigra region of the brain stem.  The loss of dopamine production affects the balance between dopamine and acetylcholine in the brain with the result that messages to the muscles become garbled.  It is estimated that the characteristic Parkinson's disease symptoms develop once 70% of the dopaminergic neurons in the substantia nigra have been destroyed.

Treatment and Prevention

At this time there is no medical cure for the condition, but drugs that alleviate the symptoms and slow the progress of the disease are available.  L-dopa, the mainstay of current drug therapy, was introduced in 1970 and since then hundreds of research papers have been published on the disease.

Alternative Treatment
Until recently there were few alternative treatments available for Parkinson's disease patients.  This is now changing.  The finding that Parkinson's disease is almost certainly caused by oxidative stress aggravated by metal toxicity is a major step forward in understanding and eventually conquering the disease.

The fact that antioxidants retard the development and slow the progression of existing Parkinson's disease was demonstrated in 1991 in a pilot study carried out by Dr. Stanley Fahn of Columbia University.  The overall conclusion of this research is that one can lower one's risk of developing Parkinson's disease by reducing one's intake of animal fats and sugar, avoiding excessive exposure to metals such as aluminum, iron, manganese, mercury, cadmium and copper, and by ensuring an adequate intake of antioxidants.  These preventive measures may also be useful in slowing down the progression of the disease.

Prognosis; Complications

Life expectancy is often about the same as for the general population, but female Parkinson's patients generally live longer with the disorder than men.

When the disease progresses to Stage 4 or 5, fatal falls become more likely as the patient becomes unable to stand or walk on their own.  Other possible complications that can increase risk of death include aspiration (breathing in food or foreign objects), deep vein thrombosis, or pulmonary embolism.

Signs, symptoms & indicators of Parkinson's Disease:

Symptoms - General

Slow/heavy physical motion

Symptoms of Parkinson's disease include stiffness or slowness of movement, a shuffling walk, stooped posture, and difficulties in performing simple tasks.

Poor bodily coordination

Those suffering from Parkinson's disease often have difficulty in performing simple tasks.

Symptoms - Head - Mouth/Oral

Gradual/rapid decline in speaking ability

About half of all Parkinson's Disease sufferers have difficulty speaking.

Symptoms - Head - Nose

Symptoms - Muscular

Hand tremors

The main symptom of Parkinson's disease is a pronounced tremor affecting the extremities – notably the hands, chin or lips.  The tremor is most evident at rest and disappears with movement and sleep.

Slow reaction time

Signs of Parkinson's disease include stiffness or slowness of movement, a shuffling walk, stooped posture, and difficulties in performing simple tasks.

Symptoms - Skeletal

Having poor posture

Stooped posture is a symptom of Parkinson's disease.

Symptoms - Sleep

Regular/frequent sleepwalking

Parkinson's Disease is thought to trigger sleepwalking in those without a previous history of sleepwalking.

Conditions that suggest Parkinson's Disease:


Alzheimer's Disease

A study published in 2003 in The Archives of Neurology found that people who rapidly develop symptoms of Parkinson's disease may be up to 8 times as likely to develop Alzheimer's disease.  The study found that the physical symptoms of Parkinson's disease are linked to a decline in mental functioning as seen in Alzheimer's disease.  About 15% of Parkinson's disease victims eventually develop Alzheimer's disease, and another 15% develop other forms of dementia.


Senile Dementia

Memory impairment and cognitive dysfunction are rarely encountered in early stage Parkinson's disease.  However, about 30% of Parkinson's disease victims eventually develop Alzheimer's disease or other forms of dementia.


Symptoms - Muscular

Risk factors for Parkinson's Disease:


Cocaine Addiction

Some researchers believe that cocaine could spark the early onset of Parkinson's disease by causing the body to exhaust its supply of dopamine prematurely.

Environment / Toxicity

Heavy Metal Toxicity

Metals such as iron, manganese, cadmium, copper, and mercury (from dental amalgams) have been implicated as causative factors in the development of Parkinson's disease.


Antioxidant Requirement

The question as to what causes the destruction of the dopamine-producing cells has puzzled researchers for years but a consensus is now emerging that Parkinson's disease is caused by oxidative stress and metal toxicity.  The idea that oxidative stress, i.e. an excess of free radicals in the body, can cause disease was first brought forward in 1983.  Numerous studies have shown that Parkinson's disease victims have low levels of natural antioxidants (glutathione and superoxide dismutase) and high levels of iron in the substantia nigra areas of their brains.  It is believed that iron helps catalyze the free radical reactions that destroy the dopamine-producing cells.

Supplements, Medications, Drugs

(Past) ecstasy use

Some researchers believe that ecstasy use could lead to early onset of Parkinson's disease by causing the body to exhaust its supply of dopamine prematurely.

Symptoms - Food - Beverages

(High) green tea consumption

A chemical (EGCG) found in green tea works with another chemical, DAPH-12, to prevent and destroy amyloids, which form amyloid plaques that play a key role in the development of Parkinson's disease.

Concerned or curious about your health?  Try The Analyst™
Symptom Entry
Symptom Entry
Full Explanations
Optional Doctor Review
Review (optional)

Parkinson's Disease can lead to:

Dental / Oral



Depression is a common feature amongst Parkinson's disease victims.  Depression may be difficult to diagnose in patients with Parkinson's because the signs of these two disorders overlap.  In addition, patients with atypical Parkinson's more often have depression than patients with classical Parkinson's.

Recommendations for Parkinson's Disease:

Amino Acid / Protein


D-phenylalanine (DPA) may be helpful for some individuals with Parkinson's disease. [Arzneimittelforsch 26: pp.577-9, 1976]

Botanical / Herbal

Grape Seed Extract

Flavonoids, and in particular the proanthocyanidins (grape seed and pine bark extracts) should also be excellent candidates as Parkinson's disease preventers and retarders.  Proanthocyanidins are water-soluble antioxidants that are stronger than vitamin C and which readily cross into the brain fluid.  Clinical trials are, however, still required to support this hypothesis.

Broad Beans

Australian researchers have found that broad beans (Vicia faba) are an extremely good source of l-dopa and can, in some cases, actually replace l-dopa.  A 100gm serving of broad beans (including the pods) provides about 250mg of l-dopa and in addition a significant amount of proanthocyanidins.  The broad beans remain effective even if canned or frozen, but should always be consumed whole as the pod has been found to have the highest concentration of l-dopa.  Medication dosage may have to be adjusted if broad beans are consumed on a regular basis.


Coffee Enema

Increases glutathione levels in the liver.  See the link between Parkinson's Disease and Glutathione.


Not recommended
High/Increased Protein Diet

The timing of protein intake can markedly increase the effectiveness of l-dopa and thereby lead to reduced dosage requirements.  Researchers now recommend that protein intake be kept as low as possible and that protein be included primarily in the evening meal.


Conventional Drug Use

Since the 1960s, L-dopa (a critical ingredient used by the brain to produce the chemical dopamine) has been one of the main therapies used in the treatment of Parkinson's disease.  Several different versions of L-dopa have been developed over time, providing advantages over previous forms.

Conventional medical treatment still relies heavily on L-dopa (levo-dihydroxy-phenylalanine), a dopamine precursor that can cross the blood-brain barrier and is converted to dopamine in the brain.  L-dopa is now rarely used by itself, but rather in combination with carbidopa (Sinemet) or benserazide (Madopar) that protects it from breaking down before it reaches the brain tissue.  As L-dopa must compete with other amino acids in crossing both from the gut to the blood stream and from the blood stream to the brain, it is usually recommended that it be taken between meals rather than with meals.

Although L-dopa medications can bring significant relief from Parkinson's disease symptoms they become less effective with time.  After four or five years of increasing dosages their effect becomes sporadic and unpredictable (the "on-off syndrome") and patients become increasingly helpless and depressed.  There is also evidence that the use of L-dopa medications may lead to a deficiency of B-vitamins, especially niacin and vitamin B-6.  Most Parkinson's disease experts now recommend that L-dopa therapy be started as late as possible after diagnosis of Parkinson's disease so as to postpone the day when it no longer works and to limit its many serious adverse effects.

Selegiline (Deprenyl, Eldepryl) is another drug used in Parkinson's disease therapy.  It works by blocking the breakdown of dopamine in the brain.  Trials have shown that starting Parkinson's disease patients on selegiline can extend the time period before they need L-dopa by about nine months.  Combinations of L-dopa medications and selegiline have also been tried in early stage Parkinson's disease patients, but were found to have no advantage.  A more recent study concluded that the combination therapy increased mortality by about 50% when compared to Parkinson's disease patients treated with L-dopa medications alone.

Anticholinergic drugs work by reducing the amount of acetylcholine produced in the brain and thereby redressing the imbalance between dopamine and acetylcholine.  They are no longer recommended for older patients as they have serious neuropsychiatric side-effects.

Not recommended

Naproxen and other NSAIDs may exacerbate Parkinson's disease.



C.A. Hackethal, M.D. has reported excellent success in treating Parkinson's Disease by use of replacement therapy of DHEA.  Apparently the bad side-effects of L-Dopa are avoided, and the Parkinsonian victim is restored to appropriate functioning.


Melatonin is one of the most powerful antioxidants in the brain, and can help to gradually slow down chronic degenerative brain diseases such as Parkinsons.


Not recommended


Stress Management

Stress aggravates Parkinson's disease and relaxation therapy has been found useful in the treatment of the disease.  A well thought-out program of rest, exercise and physiotherapy can also significantly ameliorate the symptoms of Parkinson's disease.


TMG (Trimethylglycine)

The compound 5-adenosylmethionine (SAMe), potentially produced through the demethylation of TMG, has been shown to improve Parkinson's disease.

CoQ10 (Ubiquinone)

Other antioxidants such as coenzyme Q10 (ubiquinone) and proanthocyanidins may be equally or more effective than vitamins C and E. This, however, remains to be proven in clinical trials.  Coenzyme Q10 is absorbed into brain fluids and is a very powerful antioxidant.


Vitamin B6 (Pyridoxine)

In a Russian trial, 60 patients with Parkinsonism of various causes with pronounced tremor were effectively treated with intramuscular doses of vitamin B6.  Single doses were as high as 400mg; the total doses were from 3000 to 6000mg.  Changes in laboratory findings (EMG, tremorographic and myotonometric) correlated with the clinical picture.  Vitamin B6 is recommended irrespective of the cause of the disease and of the patient's age, and can be given either alone or in combination with anti-Parkinsonian drugs aside from DOPA. [Sov Med (7): pp14-9, 1979 (in Russian)]

Vitamin C (Ascorbic Acid)

A study conducted by Dr. Stanley Fahn of Columbia University found that supplementation with vitamin C and E markedly slows the progression of the disease in its early stages.  Parkinson's disease patients given large doses of oral vitamin C and synthetic vitamin E supplements (3000mg and 3200 IU daily respectively) delayed the progression of their disease to the point where they needed L-dopa 2.5 years later than a group of patients who were not taking supplements. [Am J Clin Nutr. 1991 Jan;53(1 Suppl):380S-382S]

Later research has shown that synthetic vitamin E by itself does not retard the progression of Parkinson's disease, so it is likely that it was vitamin C by itself or its combination with vitamin E that was the active component in Dr. Fahn's experiment.  It was later reported that vitamin E, a fat-soluble vitamin, does not readily cross the blood-brain barrier nor does it accumulate in the cerebrospinal fluid that bathes the brain.  Vitamin C, on the other hand, while not crossing the blood-brain barrier does enter the cerebrospinal fluid and can be found there in concentrations proportional to dietary intake.

Inasmuch as vitamin C is a highly effective antioxidant and is particularly adept in quenching hydroxyl radicals (the main culprits in the dopamine-cell destruction), it is becoming increasingly clear that this vitamin may be an excellent protector against Parkinson's disease and can materially help in slowing down the progression of the disease.

Vitamin B-Complex

Supplementation with vitamin B-complex may be necessary, especially for patients who take l-dopa medications.

Preventive measures against Parkinson's Disease:

Amino Acid / Protein


Raising glutathione levels (a potent antioxidant and detoxifier) will provide a protective effect.  See also the link between Parkinson's Disease and Glutathione.


Since the discovery more than a decade ago that Parkinson's patients suffer from a profound deficiency of the powerful brain antioxidant glutathione, medical researchers have been actively exploring techniques to administer this naturally-occurring chemical.  It is currently used intravenously.


Heavy Metal Detoxification / Avoidance

Parkinson's disease is almost certainly caused by oxidative stress aggravated by metal toxicity.  People who live in areas where the aluminum content of the drinking water is high have an excessive risk of developing Parkinson's disease.  Recent research has linked high aluminum levels in drinking water to acid rain that leaches the aluminum out of the soil and transfers it to the ground water.  Other metals are also implicated.


Sugar Avoidance / Reduction

People with a high intake of sugar (mono- and disaccharides) increase their risk of developing Parkinson's disease by a factor of three as compared to people with a more moderate intake.

Plant-Based Nutrition

Diets high in vitamin C and beta-carotene provide significant protection against Parkinson's disease.  American researchers have concluded that a high intake of animal fats is associated with a five-fold increase risk.

Animal/Saturated Fats Avoidance

American researchers have concluded that a high intake of animal fats is associated with a five-fold increase in the risk of developing Parkinson's disease.

Aspartame (Nutrasweet) Avoidance

Parkinson's disease can be triggered or worsened by ingesting aspartame according to researchers studying its possible adverse effects.


Chemical Avoidance

Occupational exposure to pesticides and herbicides has also been linked to a significantly higher risk of developing Parkinson's disease.


Not recommended

Avoiding overexposure to some metals, especially iron, can reduce the risk of developing Parkinson's disease.


Alpha Lipoic Acid

Increases glutathione levels.  See the link between Parkinson's Disease and Glutathione.


Vitamin A

Vitamin A works with other antioxidants to provide a protective effect.

Report by The Analyst™
Click to see sample report
Health problems rarely occur in isolation or for obvious reasons

Your body is a highly complex, interconnected system.  Instead of guessing at what might be wrong, let us help you discover what is really going on inside your body based on the many clues it is giving.

Our multiple symptom checker provides in-depth health analysis by The Analyst™ with full explanations, recommendations and (optionally) doctors available for case review and answering your specific questions.


Weak or unproven link: may be a sign or symptom of; may suggest; may increase risk of; sometimes leads to
Weak or unproven link:
may be a sign or symptom of; may suggest; may increase risk of; sometimes leads to
Strong or generally accepted link: often suggests; often leads to
Strong or generally accepted link:
often suggests; often leads to
Definite or direct link: strongly suggests
Definite or direct link:
strongly suggests
Weakly counter-indicative: may decrease risk of
Weakly counter-indicative:
may decrease risk of
May be useful: may help with; may help prevent
May be useful:
may help with; may help prevent
Moderately useful: often helps with; often prevents
Moderately useful:
often helps with; often prevents
Very useful: is highly recommended for; usually prevents
Very useful:
is highly recommended for; usually prevents
Often counterindicated: is often not recommended for; not recommended to use for prevention of
Often counterindicated:
is often not recommended for; not recommended to use for prevention of
We use cookies for traffic analysis, advertising, and to provide the best user experience